V = 3881.7 (8) Å³

Mo $K\alpha$ radiation

 $0.56 \times 0.18 \times 0.02 \text{ mm}$

11861 measured reflections 3820 independent reflections

2876 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.066$

7 - 8

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4triazolo[1,5-a][1,3,5]triazin-5-amine methanol disolvate¹

Anton V. Dolzhenko,^a*§ Geok Kheng Tan,^b Lip Lin Koh,^b Anna V. Dolzhenko^c and Wai Keung Chui^d

^aSchool of Pharmacy, Faculty of Health Sciences, Curtin University of Technology, GPO Box U1987, Perth 6845, Western Australia, Australia, ^bDepartment of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore, ^cPerm State Pharmaceutical Academy, 2 Polevaya Street, Perm 614990, Russian Federation, and ^dDepartment of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore

Correspondence e-mail: anton.dolzhenko@curtin.edu.au

Received 12 April 2011; accepted 15 April 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.084; wR factor = 0.183; data-to-parameter ratio = 13.9.

The 1,2,4-triazolo[1,5-a][1,3,5]triazine system in the title compound, C₁₇H₁₄FN₇·2CH₃OH, is essentially planar, with an r.m.s. deviation of 0.0215 Å. The attached phenyl ring lies almost in the mean plane of the heterocyclic core [dihedral angle = $3.56 (4)^{\circ}$]. In the crystal, centrosymmetric inversion dimers connected via intermolecular N-H···N hydrogen bonds between H atom of the primary amino group and the triazine N atom $[R_2^2(8)]$ graph-set motif form sheets parallel to (010). A second set of dimers connected via N-H···F hydrogen bonds between the other H atom of the primary amino group and the F atom forms an $R_2^2(24)$ graph-set motif linking the sheets. Methanol solvent molecules are packed in channels running along the [010] direction.

Related literature

For a review of the synthesis and biological activity of 1,2,4triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2006). For our work on the synthesis and biological activity of 1,2,4triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007a,b, 2008a,b, 2011a). For the crystal structures of similar 1,2,4triazolo[1,5-a][1,3,5]triazines, see: Dolzhenko et al. (2007c,d, 2008c, 2011b); Gilardi (1973); Khankischpur et al. (2010). For a review on the graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995).

Experimental

Crystal data

C17H14FN7·2CH4O $M_r = 399.44$ Monoclinic, C2/c a = 27.516 (3) Å b = 7.0091 (8) Å c = 20.778 (3) Å $\beta = 104.380(3)^{\circ}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.946, \ T_{\max} = 0.998$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.084$	H atoms treated by a mixture of
$wR(F^2) = 0.183$	independent and constrained
S = 1.20	refinement
3820 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
275 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$
3 restraints	

Table 1

Hydrogen-bond	geometry	(Å,	°)	i
---------------	----------	-----	----	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N6-H6B\cdots O2S^{i}$	0.87 (2)	2.52 (3)	3.033 (4)	118 (3)
$N6-H6B \cdot \cdot \cdot F1^{ii}$	0.87(2)	2.48 (2)	3.307 (3)	159 (3)
$N6-H6A\cdots N5^{i}$	0.90 (2)	2.13 (2)	3.025 (4)	178 (3)
$N7 - H7N \cdots O1S^{iii}$	0.88 (2)	1.96 (2)	2.797 (4)	158 (3)
$O1S - H1S \cdot \cdot \cdot O2S$	0.84	1.86	2.690 (3)	169
$O2S - H2S \cdot \cdot \cdot N2$	0.84	1.91	2.731 (4)	166
Symmetry codes: (i)	$-x + \frac{1}{2}, -y +$	$\frac{1}{2}, -z + 1;$ (ii)	-x + 1, -y + 1	1, -z + 1; (iii)

 $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}.$

Data collection: SMART (Bruker, 2001): cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the School of Pharmacy, Curtin University of Technology, and the National Medical Research Council, Singapore (NMRC/NIG/0019/2008).

¹ Part 19 in the series Fused heterocyclic systems with an s-triazine ring, for Part 18 see Dolzhenko et al. (2011a). § Thomson Reuters ResearcherID: B-1130-2008.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5125).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2001). SMART and SAINT. Bruker AXS GmbH, Karlsruhe, Germany.
- Dolzhenko, A. V., Bai, S., Dolzhenko, A. V. & Chui, W. K. (2011a). J. Heterocycl. Chem. 48. In the press. doi:10.1002/jhet.851.
- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2006). Heterocycles, 68, 1723-1759.
- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007a). *Heterocycles*, **71**, 429–436.
- Dolzhenko, A. V., Dolzhenko, A. V. & Chui, W. K. (2007b). Tetrahedron, 63, 12888–12895.
- Dolzhenko, A. V., Pastorin, G., Dolzhenko, A. V. & Chui, W. K. (2008a). Tetrahedron Lett. 49, 7180–7183.

- Dolzhenko, A. V., Tan, B. J., Dolzhenko, A. V., Chiu, G. N. C. & Chui, W. K. (2008b). J. Fluorine Chem. 129, 429–434.
- Dolzhenko, A. V., Tan, G. K., Dolzhenko, A. V., Koh, L. L. & Chui, W. K. (2011b). Acta Cryst. E67, 085–086.
- Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007c). Acta Cryst. E63, 02796.
- Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2007d). Acta Cryst. E63, 02797.
- Dolzhenko, A. V., Tan, G. K., Koh, L. L., Woo, S. F. & Chui, W. K. (2008c). Acta Cryst. E64, o2021.
- Gilardi, R. D. (1973). Acta Cryst. B29, 2089-2095.
- Khankischpur, M., Hansen, F. K. & Geffken, D. (2010). Synthesis, pp. 1645-1648.
- Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o1183-o1184 [doi:10.1107/S1600536811014176]

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5-amine methanol disolvate

A. V. Dolzhenko, G. K. Tan, L. L. Koh, A. V. Dolzhenko and W. K. Chui

Comment

The 1,2,4-triazolo[1,5-*a*]triazine heterocyclic system has been well recognized as a promising scaffold for the construction of compounds with diverse biological effects (Dolzhenko *et al.*, 2006). In our search for potential therapeutic agents in this class of compounds we devised a number of effective methods for the preparation of 1,2,4-triazolo[1,5-*a*]triazines (Dolzhenko *et al.*, 2007*a*,*b*; Dolzhenko *et al.*, 2008*a*,*b*). The structural investigations of 1,2,4-triazolo[1,5-*a*]triazines include an earlier report (Gilardi, 1973) of the 5,7-bis(dimethylamino)-2-methylthio-1,2,4-triazolo[1,5-*a*]triazine structure, our publications regarding structures of various amino substituted 1,2,4-triazolo[1,5-*a*]triazines (Dolzhenko *et al.*, 2008*c*; Dolzhenko *et al.*, 2011*b*), and a recent paper (Khankischpur *et al.*, 2010) mentioning the 2-amino-5-(2-phenylethyl)[1,2,4]triazolo[1,5-*a*] [1,3,5]triazin-7(6*H*)-one structure. In continuation of our program on the synthesis and structural investigation of potentially bioactive 1,2,4-triazolo[1,5-*a*]triazines, we synthesized 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazine-5-amine using a recently developed method (Dolzhenko *et al.*, 2008*a*) and report herein its molecular and crystal structure.

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazine-5-amine crystallizes together with two methanol molecules (Fig. 1 & 2). The closely similar 7-dimethylamino-1,2,4-triazolo[1,5-*a*][1,3,5]triazin-5-amine reported earlier (Dolzhenko *et al.*, 2008*c*) also crystallized in the form of a methanol solvate. The 1,2,4-triazolo[1,5-*a*][1,3,5]triazine heterocyclic system is essentially planar with an r.m.s. deviation of 0.0215 Å. The phenyl ring mean plane C5—C10 makes a small dihedral angle of 3.56 (4)° with the mean plane of the 1,2,4-triazolo[1,5-*a*][1,3,5]triazine system. The amino group nitrogen atoms N6 and N7 are located practically in the plane of the heterocyclic core with slight deviations of 0.0861 (41) Å below the mean plane, correspondingly. The molecule is twisted at the aminomethyl bridge N7—C11 [C3—N7—C11—C12 torsion angle is 100.38 (36)°].

In the crystal, molecules of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazine-5-amine form two types of centrosymmetric inversion dimers (Fig. 2). The triazine N5 atom is connected with amino group N6—H6A of a neighbouring molecule by intermolecular N–H···N hydrogen bond making $R^2_2(8)$ graph-set motif (Bernstein *et al.*, 1995) arranging the molecules in sheets parallel to the (010) plane. A second set of dimers connected *via* N–H···F hydrogen bond-ing between the N6—H6A amino group and the F1 atom of an adjacent molecule forms a $R^2_2(24)$ graph-set motif linking the sheets. The methanol molecules are packed in channels running along the [010] direction and also participate in linking the sheets *via* O–H···N and N–H···O contacts.

Experimental

The title compound was prepared according to the previously reported general method (Dolzhenko *et al.*, 2008*a*). 2-Phenyl-7-trichloromethyl-1,2,4-triazolo[1,5-*a*][1,3,5]triazin-5-amine (0.66 g, 2.0 mmol) was added to a solution of 4-fluoroben-zylamine (0.28 ml, 2.5 mmol) in DMF (5 ml) and the mixture was heated at 70–80 °C with stirring for 3 h. After cooling, ice-cold water (40 ml) was added and the product was filtered and recrystallized from methanol.

Refinement

All C-bound H atoms were positioned geometrically and included in the refinement using the riding-motion approximation [0.95 Å for CH of aromatic rings, 0.99 Å for methylene protons, 0.98 Å for methyl groups, and 0.84 Å for hydroxyl groups; $U_{iso}(H) = 1.2U_{eq}(C_{Ar}, C_{methylenic})$ and $U_{iso}(H) = 1.5U_{eq}(O, C_{Me})$] while the amino group H atoms were located in a difference map and refined with restraints on the bond lengths and thermal parameters.

Figures

Fig. 1. The molecular structure of 7-(4-fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5*a*][1,3,5]triazine-5-amine methanol disolvate showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Crystal packing in the cell (view along axis *b*).

7-(4-Fluorobenzylamino)-2-phenyl-1,2,4-triazolo[1,5-a][1,3,5]triazin-5- amine methanol disolvate

Crystal data	
C ₁₇ H ₁₄ FN ₇ ·2CH ₄ O	F(000) = 1680
$M_r = 399.44$	$D_{\rm x} = 1.367 {\rm ~Mg~m^{-3}}$
Monoclinic, $C2/c$	Melting point: 523 K
Hall symbol: -C 2yc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
<i>a</i> = 27.516 (3) Å	Cell parameters from 653 reflections
b = 7.0091 (8) Å	$\theta = 2.8 - 23.5^{\circ}$
c = 20.778 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 104.380 \ (3)^{\circ}$	T = 100 K
$V = 3881.7 (8) \text{ Å}^3$	Thin plate, colourless
Z = 8	$0.56\times0.18\times0.02~mm$

Data collection

Bruker SMART APEX CCD diffractometer	3820 independent reflections
Radiation source: fine-focus sealed tube	2876 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.066$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001)	$h = -31 \rightarrow 33$
$T_{\min} = 0.946, T_{\max} = 0.998$	$k = -8 \rightarrow 8$
11861 measured reflections	$l = -25 \rightarrow 25$

Refinement

methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.067P)^2 + 5.3197P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{max} = 0.41 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
F1	0.55659 (7)	0.8048 (3)	0.40137 (10)	0.0281 (5)
N1	0.31099 (10)	0.1280 (4)	0.27731 (12)	0.0158 (6)
N2	0.23799 (10)	0.1664 (4)	0.30860 (13)	0.0154 (6)
N3	0.31934 (10)	0.1366 (4)	0.34551 (12)	0.0147 (6)
N4	0.36437 (10)	0.1522 (4)	0.45512 (13)	0.0167 (6)
N5	0.27356 (10)	0.1770 (4)	0.42739 (13)	0.0163 (6)

supplementary materials

N6	0.32075 (11)	0.1989 (4)	0.53427 (14)	0.0211 (7)
H6A	0.2925 (10)	0.233 (5)	0.5459 (17)	0.025*
H6B	0.3506 (9)	0.196 (5)	0.5615 (15)	0.025*
N7	0.40528 (10)	0.1013 (4)	0.37144 (13)	0.0176 (6)
H7N	0.4053 (13)	0.084 (5)	0.3297 (10)	0.021*
C1	0.26169 (12)	0.1470 (4)	0.25817 (15)	0.0139 (7)
C2	0.27519 (12)	0.1601 (5)	0.36343 (16)	0.0162 (7)
C3	0.36411 (12)	0.1303 (5)	0.39200 (15)	0.0150 (7)
C4	0.31899 (12)	0.1752 (4)	0.46998 (15)	0.0151 (7)
C5	0.23498 (12)	0.1490 (5)	0.18730 (15)	0.0150 (7)
C6	0.18294 (12)	0.1645 (5)	0.16728 (16)	0.0187 (7)
H6	0.1641	0.1717	0.1998	0.022*
C7	0.15854 (13)	0.1694 (5)	0.10072 (16)	0.0209 (8)
H7	0.1230	0.1805	0.0876	0.025*
C8	0.18578 (13)	0.1582 (5)	0.05306 (16)	0.0205 (8)
H8	0.1690	0.1636	0.0072	0.025*
C9	0.23750 (14)	0.1392 (5)	0.07209 (16)	0.0225 (8)
Н9	0.2561	0.1293	0.0394	0.027*
C10	0.26205 (13)	0.1346 (5)	0.13909 (16)	0.0189 (7)
H10	0.2975	0.1216	0.1521	0.023*
C11	0.45495 (12)	0.1136 (5)	0.41539 (16)	0.0192 (8)
H11A	0.4756	0.0075	0.4052	0.023*
H11B	0.4524	0.0969	0.4617	0.023*
C12	0.48156 (12)	0.3013 (5)	0.41021 (15)	0.0161 (7)
C13	0.52866 (12)	0.3337 (5)	0.45154 (16)	0.0196 (8)
H13	0.5439	0.2371	0.4820	0.024*
C14	0.55430 (12)	0.5031 (5)	0.44964 (16)	0.0195 (8)
H14	0.5864	0.5251	0.4787	0.023*
C15	0.53142 (13)	0.6384 (5)	0.40394 (17)	0.0209 (8)
C16	0.48547 (13)	0.6132 (5)	0.36150 (16)	0.0223 (8)
H16	0.4711	0.7092	0.3303	0.027*
C17	0.46011 (13)	0.4430 (5)	0.36504 (16)	0.0200 (8)
H17	0.4278	0.4233	0.3363	0.024*
O1S	0.07528 (9)	0.4762 (4)	0.24754 (11)	0.0271 (6)
H1S	0.0990	0.4061	0.2677	0.041*
C1S	0.12533 (14)	0.0350 (6)	0.31845 (18)	0.0310 (9)
H1S1	0.1364	-0.0167	0.3635	0.047*
H1S2	0.1395	-0.0416	0.2881	0.047*
H1S3	0.0886	0.0311	0.3041	0.047*
O2S	0.14190 (9)	0.2264 (4)	0.31791 (12)	0.0250 (6)
H2S	0.1720	0.2276	0.3160	0.037*
C2S	0.06242 (18)	0.6058 (6)	0.2930 (2)	0.0419 (11)
H2S1	0.0920	0.6315	0.3293	0.063*
H2S2	0.0359	0.5501	0.3111	0.063*
H2S3	0.0504	0.7253	0.2701	0.063*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0251 (12)	0.0258 (12)	0.0301 (11)	-0.0071 (9)	0.0004 (9)	0.0057 (10)
N1	0.0165 (15)	0.0191 (15)	0.0120 (13)	0.0012 (12)	0.0037 (11)	-0.0003 (12)
N2	0.0127 (14)	0.0177 (15)	0.0139 (13)	-0.0010 (11)	-0.0002 (11)	-0.0008 (12)
N3	0.0129 (14)	0.0170 (15)	0.0131 (13)	-0.0014 (11)	0.0011 (11)	-0.0006 (11)
N4	0.0138 (14)	0.0184 (15)	0.0163 (14)	0.0000 (11)	0.0010 (11)	-0.0006 (12)
N5	0.0143 (14)	0.0204 (16)	0.0148 (13)	0.0011 (11)	0.0048 (11)	-0.0021 (12)
N6	0.0152 (16)	0.0319 (18)	0.0147 (15)	-0.0005 (13)	0.0007 (12)	-0.0026 (13)
N7	0.0131 (14)	0.0277 (17)	0.0109 (13)	-0.0019 (12)	0.0008 (11)	-0.0006 (12)
C1	0.0154 (17)	0.0081 (16)	0.0177 (16)	-0.0018 (12)	0.0031 (13)	-0.0010 (13)
C2	0.0189 (17)	0.0117 (17)	0.0184 (17)	-0.0014 (13)	0.0052 (14)	-0.0007 (14)
C3	0.0170 (17)	0.0117 (16)	0.0158 (16)	-0.0037 (13)	0.0034 (13)	-0.0009 (13)
C4	0.0173 (17)	0.0123 (17)	0.0127 (15)	-0.0007 (13)	-0.0017 (13)	0.0002 (13)
C5	0.0202 (18)	0.0114 (16)	0.0125 (16)	-0.0012 (13)	0.0024 (13)	-0.0015 (13)
C6	0.0196 (18)	0.0182 (19)	0.0183 (17)	-0.0015 (14)	0.0048 (14)	-0.0030 (14)
C7	0.0156 (18)	0.0212 (19)	0.0219 (18)	0.0011 (14)	-0.0030 (14)	-0.0017 (15)
C8	0.028 (2)	0.0187 (19)	0.0119 (16)	0.0035 (15)	-0.0005 (14)	0.0009 (14)
С9	0.032 (2)	0.022 (2)	0.0171 (17)	0.0009 (16)	0.0130 (15)	0.0038 (15)
C10	0.0168 (17)	0.0211 (19)	0.0170 (17)	0.0009 (14)	0.0011 (14)	0.0031 (15)
C11	0.0147 (17)	0.0240 (19)	0.0183 (17)	0.0013 (14)	0.0032 (14)	0.0014 (15)
C12	0.0156 (17)	0.0228 (19)	0.0129 (15)	0.0015 (14)	0.0092 (13)	-0.0034 (14)
C13	0.0158 (17)	0.027 (2)	0.0157 (16)	0.0011 (14)	0.0030 (13)	0.0026 (15)
C14	0.0111 (17)	0.026 (2)	0.0186 (17)	-0.0029 (14)	-0.0023 (13)	0.0000 (15)
C15	0.0234 (19)	0.0201 (19)	0.0214 (17)	-0.0002 (15)	0.0099 (15)	-0.0005 (15)
C16	0.0226 (19)	0.024 (2)	0.0169 (17)	0.0037 (15)	-0.0018 (14)	0.0031 (15)
C17	0.0159 (17)	0.027 (2)	0.0162 (16)	-0.0003 (15)	0.0017 (14)	0.0002 (15)
O1S	0.0222 (14)	0.0407 (17)	0.0166 (12)	0.0037 (12)	0.0014 (10)	0.0019 (12)
C1S	0.026 (2)	0.044 (3)	0.025 (2)	-0.0040 (18)	0.0104 (17)	-0.0041 (18)
O2S	0.0158 (13)	0.0364 (16)	0.0235 (13)	0.0028 (11)	0.0062 (11)	-0.0015 (12)
C2S	0.065 (3)	0.027 (2)	0.038 (2)	0.006 (2)	0.020 (2)	0.0071 (19)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

F1—C15	1.364 (4)	C9—C10	1.389 (5)
N1—C1	1.322 (4)	С9—Н9	0.9500
N1—N3	1.379 (3)	C10—H10	0.9500
N2—C2	1.330 (4)	C11—C12	1.523 (5)
N2—C1	1.371 (4)	C11—H11A	0.9900
N3—C3	1.364 (4)	C11—H11B	0.9900
N3—C2	1.366 (4)	C12—C13	1.384 (5)
N4—C3	1.319 (4)	C12—C17	1.393 (5)
N4—C4	1.368 (4)	C13—C14	1.387 (5)
N5—C4	1.340 (4)	С13—Н13	0.9500
N5—C2	1.346 (4)	C14—C15	1.378 (5)
N6—C4	1.335 (4)	C14—H14	0.9500
N6—H6A	0.900 (18)	C15—C16	1.362 (5)

supplementary materials

N6—H6B	0.874 (18)	C16—C17	1.393 (5)
N7—C3	1.322 (4)	C16—H16	0.9500
N7—C11	1.445 (4)	C17—H17	0.9500
N7—H7N	0.877 (18)	O1S—C2S	1.418 (5)
C1—C5	1.473 (4)	O1S—H1S	0.8400
C5—C6	1.392 (5)	C1S—O2S	1.418 (5)
C5—C10	1.393 (4)	C1S—H1S1	0.9800
C6—C7	1.380 (5)	C1S—H1S2	0.9800
С6—Н6	0.9500	C1S—H1S3	0.9800
С7—С8	1.385 (5)	O2S—H2S	0.8400
С7—Н7	0.9500	C2S—H2S1	0.9800
С8—С9	1.386 (5)	C2S—H2S2	0.9800
С8—Н8	0.9500	C2S—H2S3	0.9800
C1N1N3	101 6 (2)	C9_C10_H10	119.8
$C_2 N_2 C_1$	101.0(2) 103.0(3)	$C_{2} = C_{10} = H_{10}$	119.8
$C_2 = N_2 = C_1$	103.9(3) 121.2(2)	N7 C11 C12	119.0 112.7(2)
C_{3} N3 N1	121.2(3) 128.1(2)	N7 C11 H11A	113.7 (3)
$C_{2} = N_{2} = N_{1}$	128.1(3)	N = C I = H I A	108.8
$C_2 = N_3 = N_1$	110.7(2) 117.2(2)	NZ C11 U11D	108.8
$C_3 = N_4 = C_4$	117.5 (3)	N/—CII—HIIB	108.8
C4 = N5 = C2	113.4 (3)		108.8
C4 = N6 = H6A	119 (2)	HIIA—CII—HIIB	107.7
	116 (2)	C13 - C12 - C17	118.4 (3)
H6A - N6 - H6B	124 (3)		119.4 (3)
$C_3 = N/ = C_1 I$	122.6 (3)		122.2 (3)
$C_3 - N / - H / N$	124 (2)	C12—C13—C14	121.8 (3)
CII—N/—H/N	114 (2)	С12—С13—Н13	119.1
NI-CI-N2	115.3 (3)	С14—С13—Н13	119.1
NI-CI-CS	121.4 (3)	C15C14C13	117.4 (3)
N2—C1—C5	123.3 (3)	C15—C14—H14	121.3
N2—C2—N5	129.5 (3)	C13—C14—H14	121.3
N2—C2—N3	108.5 (3)	C16—C15—F1	119.0 (3)
N5—C2—N3	122.0 (3)	C16—C15—C14	123.3 (3)
N4—C3—N7	123.1 (3)	F1—C15—C14	117.7 (3)
N4—C3—N3	118.8 (3)	C15—C16—C17	118.3 (3)
N7—C3—N3	118.1 (3)	C15—C16—H16	120.9
N6—C4—N5	117.1 (3)	C17—C16—H16	120.9
N6—C4—N4	115.6 (3)	C12—C17—C16	120.8 (3)
N5—C4—N4	127.3 (3)	С12—С17—Н17	119.6
C6—C5—C10	119.0 (3)	C16—C17—H17	119.6
C6—C5—C1	121.3 (3)	C2S—O1S—H1S	109.5
C10—C5—C1	119.7 (3)	O2S—C1S—H1S1	109.5
C7—C6—C5	120.7 (3)	O2S—C1S—H1S2	109.5
С7—С6—Н6	119.7	H1S1—C1S—H1S2	109.5
С5—С6—Н6	119.7	O2S—C1S—H1S3	109.5
C6—C7—C8	120.0 (3)	H1S1—C1S—H1S3	109.5
С6—С7—Н7	120.0	H1S2—C1S—H1S3	109.5
С8—С7—Н7	120.0	C1S—O2S—H2S	109.5
С7—С8—С9	120.1 (3)	O1S-C2S-H2S1	109.5
С7—С8—Н8	120.0	O1S—C2S—H2S2	109.5

С9—С8—Н8	120.0	H2S1—C2S—H2S2	109.5
C8—C9—C10	119.8 (3)	O1S—C2S—H2S3	109.5
С8—С9—Н9	120.1	H2S1—C2S—H2S3	109.5
С10—С9—Н9	120.1	H2S2—C2S—H2S3	109.5
C9—C10—C5	120.4 (3)		
C1—N1—N3—C3	-177.9 (3)	N1-C1-C5-C6	178.5 (3)
C1—N1—N3—C2	0.0 (3)	N2-C1-C5-C6	-2.3 (5)
N3—N1—C1—N2	-0.2 (4)	N1-C1-C5-C10	-1.4 (5)
N3—N1—C1—C5	179.1 (3)	N2-C1-C5-C10	177.9 (3)
C2—N2—C1—N1	0.4 (4)	C10-C5-C6-C7	-1.3 (5)
C2—N2—C1—C5	-179.0 (3)	C1—C5—C6—C7	178.9 (3)
C1—N2—C2—N5	178.2 (3)	C5—C6—C7—C8	0.2 (5)
C1—N2—C2—N3	-0.3 (3)	C6—C7—C8—C9	1.0 (5)
C4—N5—C2—N2	-176.2 (3)	C7—C8—C9—C10	-1.1 (5)
C4—N5—C2—N3	2.2 (4)	C8—C9—C10—C5	0.0 (5)
C3—N3—C2—N2	178.3 (3)	C6C5C10C9	1.2 (5)
N1—N3—C2—N2	0.2 (4)	C1—C5—C10—C9	-179.0 (3)
C3—N3—C2—N5	-0.4 (5)	C3—N7—C11—C12	-100.4 (4)
N1—N3—C2—N5	-178.4 (3)	N7-C11-C12-C13	177.6 (3)
C4—N4—C3—N7	-178.0 (3)	N7-C11-C12-C17	-2.4 (4)
C4—N4—C3—N3	1.6 (4)	C17-C12-C13-C14	1.0 (5)
C11—N7—C3—N4	-7.6 (5)	C11-C12-C13-C14	-179.0 (3)
C11—N7—C3—N3	172.8 (3)	C12-C13-C14-C15	-1.1 (5)
C2—N3—C3—N4	-1.7 (5)	C13—C14—C15—C16	0.2 (5)
N1—N3—C3—N4	176.0 (3)	C13-C14-C15-F1	-179.4 (3)
C2—N3—C3—N7	177.9 (3)	F1-C15-C16-C17	-179.6 (3)
N1—N3—C3—N7	-4.4 (5)	C14—C15—C16—C17	0.8 (5)
C2—N5—C4—N6	177.4 (3)	C13-C12-C17-C16	0.0 (5)
C2—N5—C4—N4	-2.4 (5)	C11—C12—C17—C16	-179.9 (3)
C3—N4—C4—N6	-179.3 (3)	C15—C16—C17—C12	-0.9 (5)
C3—N4—C4—N5	0.5 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N6—H6B···O2S ⁱ	0.87 (2)	2.52 (3)	3.033 (4)	118 (3)
N6—H6B…F1 ⁱⁱ	0.87 (2)	2.48 (2)	3.307 (3)	159 (3)
N6—H6A…N5 ⁱ	0.90 (2)	2.13 (2)	3.025 (4)	178 (3)
N7—H7N…N1	0.88 (2)	2.57 (3)	2.841 (4)	99 (2)
N7—H7N···O1S ⁱⁱⁱ	0.88 (2)	1.96 (2)	2.797 (4)	158 (3)
O1S—H1S···O2S	0.84	1.86	2.690 (3)	169
O2S—H2S····N2	0.84	1.91	2.731 (4)	166
N7—H7N…N1	0.88 (2)	2.57 (3)	2.841 (4)	99 (2)
Symmetry codes: (i) $-x+1/2$, $-y+1/2$, $-z+1$; (ii) $-x+1$, $-y+1$, $-z+1$; (iii) $-x+1/2$, $y-1/2$, $-z+1/2$.				

Fig. 1

Fig. 2